Quantum Computing

Paper: Spin-orbit coupling and operation of multi-valley spin qubits

November 5th, 2015  |  by  |  published in News, Papers, Quantum Computing

Paper: Spin-orbit coupling and operation of multi-valley spin qubits

Spin qubits composed of either one or three electrons are realized in a quantum dot formed at a Si/SiO_2-interface in isotopically enriched silicon. Using pulsed electron spin resonance, we perform coherent control of both types of qubits, addressing them via an electric field dependent g-factor. We perform randomized benchmarking and find that both qubits can […]

How to make superconducting circuits out of a semiconductor

July 4th, 2014  |  by  |  published in Featured, Highlights, Quantum Computing, Research

How to make superconducting circuits out of a semiconductor

Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by […]

On-chip cavity quantum phonodynamics and acceptor qubits in silicon

September 8th, 2013  |  by  |  published in All, Highlights, Nanotechnology, Phonitons, Quantum Computing, Research

On-chip cavity quantum phonodynamics and acceptor qubits in silicon

We show how long-lived and tunable acceptor impurity states in silicon nanomechanical cavities can play the role of a matter non-linearity for coherent phonons just as, e.g., the Josephson qubit plays in circuit-QED.

Phys. Rev. B: On-chip cavity quantum phonodynamics with an acceptor qubit in silicon

August 30th, 2013  |  by  |  published in All, Nanotechnology, News, Papers, Phonitons, Quantum Computing

Phys. Rev. B: On-chip cavity quantum phonodynamics with an acceptor qubit in silicon

We describe a chip-based, solid-state analog of cavity-QED utilizing acoustic phonons instead of photons. We show how long-lived and tunable acceptor impurity states in silicon nanomechanical cavities can play the role of a matter nonlinearity for coherent phonons just as, e.g., the Josephson qubit plays in circuit QED. Both strong coupling (number of Rabi oscillations ≲100) and strong dispersive coupling (0.1–2 MHz) regimes can be reached in cavities in the 1–20-GHz range, enabling the control of single phonons, phonon-phonon interactions, dispersive phonon readout of the acceptor qubit, and compatibility with other optomechanical components such as phonon-photon translators. We predict explicit experimental signatures of the acceptor-cavity system.

Preprint: Observation of Autler-Townes effect in a dispersively dressed Jaynes-Cummings system

August 9th, 2013  |  by  |  published in All, News, Preprints, Quantum Computing

Preprint: Observation of Autler-Townes effect in a dispersively dressed Jaynes-Cummings system

Two-tone spectroscopy of a superconducting transmon qubit in a cavity. We find evidence of strongly-coupled atomic physics in these man-made systems.

Superconducting qubits and circuits are a promising technology for a variety of applications, from exploration of physics to quantum information processing or particle detectors.

Preprint: Relaxation of excited spin, orbital, and valley qubit states in single electron silicon quantum dots

January 25th, 2013  |  by  |  published in All, Blog, Preprints, Quantum Computing

Preprint: Relaxation of excited spin, orbital, and valley qubit states in single electron silicon quantum dots

We review and expand on previous work that treats relaxation physics of low-lying excited states in ideal, single electron, silicon quantum dots in the context of quantum computing. These states are of three types: orbital, valley, and spin. The relaxation times depend sensitively on system parameters such as the dot size and the external magnetic […]

Physics of silicon quantum dot qubits

September 27th, 2010  |  by  |  published in All, Conferences, Featured, Highlights, Quantum Computing

Physics of silicon quantum dot qubits

The spin of an electron in silicon may act as an information carrier in future information technologies, from quantum computers to spintronics. For quantum information applications, the spin of cold localized electrons in silicon can make a good quantum memory due to the purifiability of the spin environment (a spin-0 nuclear isotope is available) and […]

Tahan Research

http://research.tahan.com/

Recent Comments


    Recent Comments

      Tags

      Categories