About: admin

admin
Profile:

Website

Contact:

Email admin

Posts by admin

How to make superconducting circuits out of a semiconductor

Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by […]


Nature Communications: Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor

Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by […]

Read | No Comments | Tags: News · Papers

Yun-Pil Shim giving invited talk at the APS March Meeting

Find out the latest developments in our bottom-up superconducting silicon work.

Read | No Comments | Tags: All · Blog · News

Charles Tahan selected to receive the Presidential Early Career Award for Scientists and Engineers (PECASE)

President Obama today named 102 researchers as recipients of the Presidential Early Career Awards for Scientists and Engineers, the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers.

Read | No Comments | Tags: Blog · News

On-chip cavity quantum phonodynamics and acceptor qubits in silicon

We show how long-lived and tunable acceptor impurity states in silicon nanomechanical cavities can play the role of a matter non-linearity for coherent phonons just as, e.g., the Josephson qubit plays in circuit-QED.


Preprint: Bottom-up superconducting and Josephson junction devices inside a Group-IV semiconductor

We propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyze the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, SQUIDs, and qubits are realizable. This work motivates the pursuit of bottom-up superconductivity for improved or fundamentally different technology and physics.

Read | No Comments | Tags: All · News · Preprints

Phys. Rev. B: On-chip cavity quantum phonodynamics with an acceptor qubit in silicon

We describe a chip-based, solid-state analog of cavity-QED utilizing acoustic phonons instead of photons. We show how long-lived and tunable acceptor impurity states in silicon nanomechanical cavities can play the role of a matter nonlinearity for coherent phonons just as, e.g., the Josephson qubit plays in circuit QED. Both strong coupling (number of Rabi oscillations ≲100) and strong dispersive coupling (0.1–2 MHz) regimes can be reached in cavities in the 1–20-GHz range, enabling the control of single phonons, phonon-phonon interactions, dispersive phonon readout of the acceptor qubit, and compatibility with other optomechanical components such as phonon-photon translators. We predict explicit experimental signatures of the acceptor-cavity system.


Preprint: Observation of Autler-Townes effect in a dispersively dressed Jaynes-Cummings system

Two-tone spectroscopy of a superconducting transmon qubit in a cavity. We find evidence of strongly-coupled atomic physics in these man-made systems.

Superconducting qubits and circuits are a promising technology for a variety of applications, from exploration of physics to quantum information processing or particle detectors.


Nature Communications: Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting

New theory for spin-valley anticrossing and spin-relaxation in realistic silicon quantum dots.

Silicon quantum dots are promising for quantum computing as they offer low memory errors, fast operation, and a hoped-for compatibility with standard semiconductor processes.

Read | No Comments | Tags: All · News · Papers

March Meeting 2013: Invited talk on cavity quantum phonodynamics, talks on spin-valley relaxation and many-body phononic systems.

This year’s APS March Meeting in Baltimore was unquestionably a good one. It seemed like everyone showed up. We were happy to be able to give an invited talk on cavity quantum phonodynamics and two theory talks on our work on quantum dot spin-valley relaxation with the Australians and on the theory of proposed many-body phononic systems. Also of note were the two sessions on Quantum Characterization, Verification, and Validation (I, II) and the four(!) on nano/optomechanics (I, II, III, IV).

Read | No Comments | Tags: All · News · Talks

previous page · next page

Tahan Research

http://research.tahan.com/

Recent Comments


    Recent Comments

      Tags

      Recent Posts